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Blood pressure and water regulation: understanding sex
hormone effects within and between men and women
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Abstract Cardiovascular disease remains the leading cause of death for both men and women.
Hypertension is less prevalent in young women compared with young men, but menopausal
women are at greater risk for hypertension compared with men of similar age. Despite these
risks, women do not consistently receive first line treatment for the early stages of hypertension,
and the greater morbidity in menopause reflects this neglect. This review focuses on ovarian
hormone effects on the cardiovascular and water regulatory systems that are associated with
blood pressure control in women. The study of ovarian hormones within young women is
complex because these hormones fluctuate across the menstrual cycle, and these fluctuations
can complicate conclusions regarding sex differences. To better isolate the effects of oestrogen
and progesterone on the cardiovascular and water regulation systems, we developed a model
to transiently suppress reproductive function followed by controlled hormone administration.
Sex differences in autonomic regulation of blood pressure appear related to ovarian hormone
exposure, and these hormonal differences contribute to sex differences in hypertension and
orthostatic tolerance. Oestrogen and progesterone exposure are also associated with plasma
volume expansion, and a leftward shift in the osmotic operating point for body fluid regulation.
In young, healthy women, the shift in osmoregulation appears to have only a minor effect on
overall body water balance. Our overarching conclusion is that ovarian hormone exposure is the
important underlying factor contributing to differences in blood pressure and water regulation
between women and men, and within women throughout the lifespan.
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Introduction

Cardiovascular disease is the leading cause of death in
American men and women (Lloyd-Jones et al. 2010).
The prevalence of hypertension in adults under 45 years
of age is lower in women compared with men but is
greater in postmenopausal women relative to men over
55 years (Roger et al. 2011). Across the lifespan, hyper-
tension risk is approximately 29% and 31% for US
women and men, respectively (Keenan & Rosendorf,
2011). Despite these data, there has been a bias assuming
women are protected from hypertension. Until recent
years women were excluded from landmark studies that set
the standards for detection and treatment of heart disease
and hypertension, and women have not consistently
received first line treatment for the early stages of hyper-
tension. We believe this neglect is reflected in higher
cardiovascular disease and hypertension morbidity in
older women compared with men with similar signs
and symptoms. Within this review consistent with WHO
definitions, we use the word ‘sex’ to define biological
and physical characteristics when discussing differences
between men and women (WHO, 2012). Although gender
differences play an important role in human health, gender
(which generally refers to socially constructed roles and
attributes that society assigns to men and women (WHO,
2012)) is beyond the scope of this review.

Focus of this review

The primary functions of oestrogens and progesterone are
in reproduction. However, these hormones also influence
the integrated cardiovascular, neural and hormonal
systems that control blood pressure, blood volume, thirst,
fluid intake, and renal water and sodium regulation.
Although we fully recognize that sex differences are
not limited to sex hormone exposure, the overarching
hypothesis for this review is that the potent effects of
ovarian hormone exposure on autonomic function and
osmoregulation are the primary factors contributing to
the sex differences in blood pressure and water balance in
humans. These ovarian hormones have complex and, at
times, opposing physiological effects on the cardiovascular
and water regulation systems.

Sex differences versus hormone exposure

Differences between men and women that are related to
sex hormone exposure are exaggerated or minimized at
different points in a woman’s menstrual cycle because of
the large fluctuations in hormone exposure in women
across the cycle (Fig. 1A and B). For example, men and
women differ in osmotic regulation of arginine vaso-
pressin (AVP) during the early follicular phase (days 1–6)
of the menstrual cycle (when oestradiol and progesterone
exposure are lowest in women), but this difference is

not apparent when men are compared with women
in the mid-luteal phase (∼day 21, when oestrogen and
progesterone exposure is high in women) (Stachenfeld
et al. 2001) (see Fig. 1B). A similar trend for this pattern in
sex differences revealed differences in sympathetic nerve
activity during upright tilt in the follicular phase but
not in the luteal phase (Fig. 2 (Fu et al. 2009)). This
is an important point to bear in mind because the pre-
ponderance of physiological testing in studies that include
both men and women are conducted when women are
in the early follicular phase with the intent of reducing
variability between the sexes.

Considering reproductive hormone exposure
in women

Another difficulty with the study design in which
experiments are conducted near menstruation is that
women are tested during the first 7 days of a 28 day
cycle (Fig. 1A and B), which accounts for one fourth
of their reproductive life. Moreover, the gonadotropin
follicle stimulating hormone (FSH) changes in the early
part of the menstrual cycle (Fig. 1A) so this period is
not hormonally stable even though the ovarian hormones
are not changing. An alternative to early follicular phase
testing is studying women during oral contraceptive pill
(OCP) administration thereby controlling reproductive
hormone exposure. Recent data from the US Department
of Health and Human Services indicate that >90% of
US women have used hormonal contraception at some
time in their life (Mosher & Jones, 2010), so these
studies provide clinically relevant data. However, this
study design also has limitations, beginning with the
problem of comparing women who are taking exogenous
hormones that increase hormone exposure above that of
endogenous levels at any point in the menstrual cycle.
Another weakness of this study design is that progestins
in OCP have androgenic properties relative to end-
ogenous progesterone (Speroff et al. 1999), and androgens
alter peripheral vasodilatation (El-Mas et al. 2001, 2002;
Sokolnicki et al. 2007; Wenner et al. 2011a) and blood
pressure (Roesch & Keller-Wood, 1997; Reckelhoff &
Granger, 1999) so can impact studies examining blood
pressure regulation. To further compound the challenges
of this study design, these studies often use the week
of placebo pills, or ‘low hormone’ phase as a basis of
comparison to the OCP. This week is not a consistent
period of low hormone exposure because progestin
and oestradiol metabolites from OCP remain in tissue
(for variable lengths of time and concentrations among
women), so exposure is not reliably low during the placebo
week. Finally, withdrawal of the OCP can induce end-
ogenous production of oestradiol in the placebo or so
called ‘low hormone’ phase (Speroff et al. 1999; van
Heusden & Fauser, 1999; Creinin et al. 2002; Schlaff et al.
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2004), and these increases are not consistently reflected in
blood.

To isolate individual effects of oestradiol or
progesterone on physiological systems, we developed a
model to temporarily suppress the menstrual cycle (and
thus reproductive hormones) using either a gonadotropin
releasing hormone (GnRH) agonist (leuprolide acetate,
Lupron) or antagonist (ganirelix acetate, Antagon).
Leuprolide, the agonist, has greater receptor binding
and decreased degradation compared with endogenous
GnRH, so is a potent inhibitor of gonadotropin
secretion. When leuprolide is given continuously, the
hypothalamic–pituitary–ovarian axis is down-regulated,
with internalization and uncoupling of the GnRH
receptors at the pituitary level. Thus, following an

initial stimulation, chronic GnRH agonist administration
suppresses FSH-related steroidogenesis, leading to low or
undetectable oestrogen and progesterone concentrations
within 14 days (Halmos et al. 1996; Taylor et al.
2010). Ganirelix, the GnRH antagonist, is derived from
native GnRH with substitutions at positions 1, 2,
3, 6, 8 and 10 and competitively blocks the GnRH
receptors on the pituitary gonadotroph inducing a
rapid, reversible suppression of gonadotropin secretion
(Oberye et al. 1999a,b; Olivennes, 2006). In eumenorrheic
women, ganirelix administration suppresses oestrogens
and progesterone to post-menopausal levels after 48 h
of administration (Fig. 1C). During both leuprolide
and ganirelix administration we can isolate the effects
of oestrogens and progesterone in young women by

Figure 1. Plasma fluctuations of hormones and gonadotropins over a normal 28 day menstrual cycle
A, follicle stimulating hormone (FSH) and luteinizing hormone (LH); B, oestrogens and progesterone. C, changes
in 17 β-oestradiol and progesterone during gonadotropin releasing hormone (GnRH) antagonist administration
followed by 17 β-oestradiol and progesterone administration.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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selectively adding the natural forms of these hormones
back, thus permitting causal inferences about their
functions on the system targeted for study. This method
has its own weakness in that it is more invasive than
other hormone interventions in humans, although it is
well tolerated.

Autonomic control of blood pressure

Sex differences in autonomic control. Although studies
report no differences in baroreflex sensitivity between men
and women at rest (Tank et al. 2005) or during orthostatic
stress (Fu et al. 2009), young women have lower resting
blood pressure compared with young men (Christou et al.
2005), and mechanisms regulating blood pressure differ
between men and women (Charkoudian et al. 2005, 2006a;
Hart et al. 2009; Joyner et al. 2010; Hart et al. 2011).
Young women have lower blood pressure reductions
during gangiolic blockade and exaggerated blood pressure
responses to phenylephrine infusions compared with
men (Christou et al. 2005). These findings suggest both
lower sympathetic support of blood pressure and reduced
baroreflex buffering in women relative to men, which may
explain their lower resting blood pressure.

In young men, muscle sympathetic nerve activity
(MSNA) is positively correlated with total peripheral
resistance (TPR), and is inversely correlated with cardiac
output (CO), indicating low CO buffers increases in
sympathetic nerve activity to maintain blood pressure
(Charkoudian et al. 2005). In contrast, neither TPR
nor CO are related to MSNA in young women (Hart
et al. 2009). Thus, other mechanisms such as vascular
responsiveness and β-adrenergic balance to α-adrenergic
vasoconstriction may play a more prominent role in
blood pressure regulation in women than in men (Kneale
et al. 2000; Hart et al. 2011). Importantly, in the studies
described above examining sex differences, the timing of
the testing in relation to endogenous hormone levels was
either not controlled (Christou et al. 2005), with some
of the women taking OCP (Tank et al. 2005), and others
tested during the early follicular phase or during placebo
phase of OCP (Hart et al. 2009). Thus it is difficult to
determine the contribution of ovarian hormones on these
sex difference in blood pressure regulation. For a recent
review of mechanisms related to sex differences in blood
pressure regulation see Hart et al. (2012).

Oestrogens and progesterone impact on autonomic
control of blood pressure. We propose that ovarian
hormone exposure can explain the variability in blood
pressure regulation control systems between men and
women. Resting sympathetic outflow is greater during the
luteal phase – when both oestrogens and progesterone
are elevated – compared with the early follicular phase

of the menstrual cycle – when both oestrogens and
progesterone are low (Minson et al. 2000a; Carter et al.
2009b; Fu et al. 2009). During an orthostatic challenge,
total MSNA (which takes into account the area under
the MSNA burst) is also greater in the mid-luteal versus
early follicular phase (Carter et al. 2009b; Fu et al. 2009)
(Fig. 2). Despite these findings, changes in baroreflex
sensitivity during the menstrual cycle are conflicting. For
example, during a modified Oxford protocol, sympathetic
baroreflex sensitivity is greater in the mid-luteal compared
with the early follicular phase (Minson et al. 2000a),
but sympathetic baroreflex sensitivity is similar across
the early follicular and mid-luteal menstrual phases
during orthostasis (Carter et al. 2009b; Fu et al.
2009). An explanation for the discrepancy between
these studies is not obvious, but may be explained
by the method of assessing baroreflex function. While
both studies used the slope of the linear regression of
MSNA versus diastolic blood pressure, Minson et al.
(2000a) examined these responses during bolus injections
of sodium nitroprusside and phenylephrine (modified

Figure 2. Muscle sympathetic nerve activity (MSNA) burst
frequency (A) and total activity (B) responses during a graded
upright tilt in men and women during the early follicular
phase (oestrogen and progesterone are low) and the
mid-luteal phase (oestrogen and progesterone are high)
Data are mean ± SEM. Tilt5, Tilt10, Tilt20, Tilt30, Tilt40 and Tilt45
are 5, 10, 20, 30, 40 and 45 min after 60 deg upright tilt. From Fu
et al. (2009) with permission.
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Oxford technique), while the Fu et al. (2009) and Carter
et al. (2009b) studies determined baroreflex sensitivity
from spontaneous fluctuations in MSNA and DBP during
LBNP or tilt table testing. The modified Oxford technique
allows for determination of the MSNA–DBP relationship
over a wide range of blood pressure, while the spontaneous
method examines specifically the smaller physiological
range. Similarly, discrepancies exist with regard to changes
in baroreflex control of heart rate across the menstrual
cycle, with some studies reporting no change in baroreflex
control of heart rate across the menstrual cycle (Minson
et al. 2000a; Cooke et al. 2002) or an increase in
baroreflex control of heart rate in the pre-ovulatory phase
compared with the early follicular phase (Tanaka et al.
2003). Nonetheless, while there are some inconsistencies
across investigations, together these data suggest that sex
hormones impact sympathetic neural control of baroreflex
function.

Based on the studies described above, it is unclear
whether oestrogens or progesterone exposure is most
important to the changes in baroreflex function
across the menstrual cycle. Baroreflex control of
heart rate increases near ovulation when oestrogen
peaks (Tanaka et al. 2003; Brooks et al. 2012),
indicating an important role for oestrogens. Conversely,
in rats baroreflex function is suppressed through
the neurohormone 3α-hydroxydihydroprogesterone via
GABAnergic influences (Brooks et al. 2010; Laiprasert,
1998 no. 7656}. The opposing influences of oestrogens
and progesterone on baroreflex function make under-
standing the impact of hormones on the baroreflex
within women challenging, and may also have led to
the discrepancies among the various studies. Studies that
isolate these hormones during testing using the GnRH
antagonist–hormone administration method will help
to isolate the particular hormone involved in altering
baroreflex function in young women.

There remains some controversy regarding the impact
of OCP on baroreflex function. A number of studies
have demonstrated that resting MSNA and plasma
noradrenaline (norepinephrine) are unaffected by OCP
phase (Minson et al. 2000b; Carter et al. 2009a).
Using pharmacological perturbation of blood pressure
(modified Oxford), Minson et al. (2000b) demonstrated
suppressed sympathetic and cardiovagal baroreflex
sensitivity during the OCP active pill phase compared with
a placebo phase. In contrast, Carter et al. (2009a) found
no effect of OCP on MSNA responses or sympathetic
baroreflex sensitivity during lower body negative pressure
(Carter et al. 2009a). The conflicting findings between
these studies are difficult to reconcile, but may be related to
methodological differences such as modified Oxford versus
the LBNP manipulation of blood pressure as discussed
earlier. In addition, these studies used different types
and doses of OCP, so the variability in the type and

magnitude of hormone exposure also makes them difficult
to compare, as the oestradiol–progestin composition
of the OCPs, both within and across studies, were
not standardized (Minson et al. 2000b; Carter et al.
2009a). Furthermore, because all studies used OCPs
with combined oestradiol and progestin, the independent
effects of oestradiol and progestins on baroreflex function
remain unclear, and the actions of these hormones can
oppose each other. Despite these challenges, these studies
using OCP did support a role of ovarian hormone
exposure on autonomic control of blood pressure in
women. Moreover, as mentioned earlier, OCPs have been
used by ∼90% of women, so more consistent OCP studies
will be essential to provide data on cardiovascular control
mechanisms during OCP administration.

Menopause and ageing effects on autonomic function.
Young women tend to have lower blood pressure than men
but lose this protection as they age and enter menopause.
In menopause women lose ovarian function, associated
with a permanent cessation of menstruation and low
oestrogen and progesterone exposure beginning between
the ages of 50–55 years. Cardiovascular disease, stroke and
hypertension prevalence in menopausal women surpasses
that of men of similar age, and approximately 75%
of postmenopausal women become hypertensive (Roger
et al. 2011). The direct mechanisms involved in changing
blood pressure regulation in menopausal women have not
been definitively determined but the sympathetic nervous
system likely plays an important role. Although in young
healthy men and women MSNA is unrelated to resting
blood pressure, there appears to be a direct relationship
between MSNA and blood pressure in older humans, and
this relationship is especially strong in women (Narkiewicz
et al. 2005). Although sympathetic activity is lower
in young women compared with young men, MSNA
increases with age in both sexes, and some reports find
similar MSNA in older men and women (Matsukawa et al.
1998; Narkiewicz et al. 2005), while other reports find the
greater MSNA in young men relative to women continued
into their later years (Ng et al. 1993). Although these
studies report slightly different findings with regard to
MSNA and sex into older age, they all indicate a rise in
blood pressure in older women, indicating the cardio-
vascular system in women becomes more sensitive to
sympathetic input as they age (Ng et al. 1993; Matsukawa
et al. 1998; Narkiewicz et al. 2005). The mechanism for
the changes in sympathetic nervous system in function
in women has not yet been confirmed, but may be a
direct result of oestrogen withdrawal because oestrogen
administration decreases noradrenaline spillover (Sudhir
et al. 1997), MSNA (Vongpatanasin et al. 2001) and
enhances sympathetic baroreflex sensitivity (Hunt et al.
2001) in menopausal women.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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Vascular responsiveness

Sex differences in vascular responsiveness. Sex
differences in blood pressure control are also likely related
to differences in vascular responsiveness, and vascular
reactivity differs between men and women. Brachial
artery infusions of the β-2 agonist albuterol induce greater
increases in forearm blood flow, and plasma noradrenaline
infusions with and without the β-antagonist propranolol,
induce a lesser vasoconstriction of forearm blood vessels
in women compared with men (Kneale et al. 2000).
Moreover, the vasoconstrictor response to noradrenaline
is lower in women compared with men although
blocking the β-receptors with propranolol removes the
sex differences, suggesting that enhanced β-2 receptor
vasodilatation in women attenuates the adrenergic
vasoconstrictor response (Hart et al. 2011). These studies
indicate a greater β-adrenergic (Kneale et al. 2000; Hart
et al. 2011) and lower α-adrenergic (Schmitt et al. 2010)
support of blood pressure in women compared with men.
Furthermore, women tend to have greater vasodilatory
responses during reactive hyperaemia compared with
men (Hashimoto et al. 1995; Levenson et al. 2001).

Oestrogens and progesterone effects on vascular
responsiveness. Consistent with our overall hypothesis,
the differences in vascular responsiveness between men
and women are likely mediated by ovarian hormones.
Oestrogens appear to have a direct effect on the
vasculature. Oestrogen receptors are found on the
endothelium and enhance nitric oxide bioavailability
(Orshal & Khalil, 2004) so probably contribute to
sex differences in vascular responsiveness. High end-
ogenous oestrogen exposure is associated with increases
in flow-mediated vasodilatation (FMD), an index of
endothelial function in humans (Hashimoto et al.
1995; Williams et al. 2001; Adkisson et al. 2010).
Similarly, administering exogenous oestradiol enhances
FMD in young women (Meendering et al. 2008; Miner
et al. 2011) and attenuates vasoconstrictor responses
to noradrenaline (Sudhir et al. 1997). As proposed
earlier, data in rats suggest the attenuated vasoconstrictor
response associated with oestradiol exposure appears
to be a result of reduced α- concomitant with greater
β-adrenergic receptor actions (Ferrer et al. 1996; Zhang &
Davidge, 1999). In ovariectomized rat mesenteric arteries,
exposure to physiological levels of oestradiol attenuated
vasoconstriction during phenylephrine infusion (Zhang
& Davidge, 1999), and enhanced the vasodilatory
responses to isoproterenol infusion (Ferrer et al. 1996).
Thus, the mechanisms contributing to the greater
vascular relaxation by oestradiol include enhanced
NO bioavailability, greater β-adrenergic and lower
α-adrenergic actions.

Proges terone receptors have also been identified
in human endothelial cells of the aorta, internal
carotid artery and coronary arteries (Lin et al. 1982;
Ingegno et al. 1988; Lee et al. 1997), supporting the
argument that progesterone has also direct effects on
the vasculature. Progesterone has both vasodilatory and
vasoconstrictive effects in the vasculature depending
on location of the vessel and level of exposure.
Indeed, progesterone at physiological levels can inhibit
the production of endothelin-1 in bovine aortic end-
othelial cells (Morey et al. 1997), but at supra-
physiological levels inhibits endothelium-independent
relaxation by blocking calcium channels in vascular
smooth muscle (Jiang et al. 1992; Perusquia et al.
1996). Furthermore, physiological progesterone exposure
diminishes the vasodilatory effects of oestradiol on
FMD during GnRH suppression (Miner et al. 2011).
Combined oestradiol and progesterone administration
enhances peripheral cutaneous vasoconstrictor response
to cutaneous noradrenaline infusions in women with
high orthostatic tolerance, but combined administration
of these same ovarian hormones does not influence
vasoconstrictor responses to noradrenaline infusions in
women with low orthostatic tolerance (Wenner et al.
2011b). Thus, low sensitivity to progesterone-mediated
vasoconstriction provides less sympathetic support for
blood pressure in women with low orthostatic tolerance
during orthostatic stress.

Ovarian hormones and water regulation

Overview of water regulation. Fluid regulatory systems
are sensitive to stimuli arising from water deficits or
increased blood sodium, tonicity or osmolality in the
extracellular fluid space or plasma. Arginine vasopressin
(AVP; or antidiuretic hormone), synthesized in the
cell bodies of nuclei located in the anterior hypo-
thalamus, is a powerful vasoconstrictor and regulates
renal free water clearance. Axons from the anterior hypo-
thalamus project into the posterior pituitary where AVP
is stored and released in response to stimulation of
central osmoreceptors. Arginine vasopressin is sensitive
to increases in plasma osmolality as small as 5 mosmol
(kg H2O)−1 (2–3%), leading to an immediate and linear
AVP response (Calzone et al. 2001; Stachenfeld et al.
2001; Stachenfeld & Keefe, 2002). Thirst and AVP are also
sensitive to volume stimuli via peripheral baroreceptors,
but require plasma volume changes of ∼10% to trigger
AVP release or thirst sensation in humans. Thus, to
determine sex differences in, or sex hormone effects on,
osmotic regulation of AVP in humans, we examined
the linear slope and intercept of the P[AVP]:plasma
osmolality (POsm) and thirst:POsm linear relationships
during dehydration or a 2 h hypertonic saline infusion

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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between men and women under different hormone
conditions. Important for this review, the hypothalamic
nuclei that produce AVP contain oestrogen receptors
(Heritage et al. 1980; Sar & Stumpf, 1980).

Sex differences in water regulation. Neuron activity and
size in hypothalamic nuclei responsible for AVP release are
greater in men compared with women (Ishunina & Swaab,
1999). Resting P[AVP] is greater in men than women when
women are in the early follicular phase of their menstrual
cycle, but not in the mid-luteal phase (Claybaugh et al.
2000; Stachenfeld et al. 2001). (Thus, the discovery of sex
differences in these systems is dependent on the phase
of the women’s menstrual cycle in which the studies
take place.) Men have greater AVP sensitivity but lower
water turnover in response to hypertonic saline infusion
compared with women regardless of menstrual cycle phase
(Claybaugh et al. 2000; Stachenfeld et al. 2001). Men
also have higher nocturnal P[AVP] despite similar urine
osmolality compared with women, suggesting greater
renal sensitivity to AVP in women compared with men at
night (Hvistendahl et al. 2007). During hypertonic saline
infusion, osmotic threshold for AVP release is lower in
men compared with women during the early follicular but
not during the mid-luteal phase of the menstrual cycle
(Stachenfeld et al. 2001) (Fig. 3). Indeed P[AVP] doubled
during hypertonic saline infusion, with no effect on free
water clearance, indicating lower renal sensitivity to AVP
in men versus women (in the luteal phase) (Stachenfeld
et al. 2001). Thus androgens may increase AVP sensitivity
whereas oestrogens lower the POsm threshold for AVP
release (Stachenfeld et al. 1998, 2001; Stachenfeld & Keefe,
2002).

Figure 3. Mean plasma arginine vasopressin concentration
(P[AVP]) in response to increases in POsm during hypertonic
saline infusion in the early follicular and mid-luteal phases in
women and in men
Data are mean ± SEM. From Stachenfeld et al. (2001).

Oestrogen and progesterone effects on the regulation
of body water and electrolytes. As oestrogen receptors
in the hypothalamus had been identified in animals,
we examined a role for oestrogens the in osmotic
AVP regulation in humans. Specifically, we determined
the slope and intercept of the P[AVP]:osmolality (POsm)
and thirst:POsm linear relationships during dehydration
and hypertonic saline infusion under different hormone
exposures (Calzone et al. 2001; Stachenfeld et al. 2001;
Stachenfeld & Keefe, 2002). In a series of studies, we
demonstrated an oestrogen-associated shift to an earlier
abscissal intercept or threshold for osmotic sensation
of thirst and the release of AVP, with no change in
the slope, or sensitivity of this relationship (Fig. 4).
These shifts persisted during progestin and combined
oestrogen–progestin OCP treatments, were consistent
with those of earlier investigations of oestrogen effects on

Figure 4. Mean P[AVP] and mean thirst responses to increases
in plasma osmolality (POsm) during hypertonic saline infusion
in the early follicular and mid-luteal phases and during oral
contraceptive treatment with progesterone only and
combined oestrogen and progesterone
Data are mean ± SEM. From Calzone et al. (2001).

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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osmotic AVP regulation (Spruce et al. 1985; Trigoso et al.
1996), and were supported by our subsequent studies with
the GnRH suppression, hormone add-back model (Fig. 5)
(Stachenfeld & Keefe, 2002).

Despite the earlier osmotic AVP release, the rate
of renal free water clearance (CH2O) during osmotic
stimulation appears unaffected by hormone exposure
in women (Stachenfeld & Keefe, 2002), suggesting that
these hormones may lower renal tubular sensitivity to
AVP. This finding would be consistent with studies
demonstrating that oestradiol attenuates the renal anti-
diuretic action of AVP in the rat (Carlberg et al. 1984;
Wang et al. 1995). We tested this hypothesis, but our
human studies examining renal concentrating response to
graded synthetic AVP infusions do not support a change
in renal tubular sensitivity to AVP during oestradiol
administration (Fig. 6) (Stachenfeld et al. 2003). Thus, the
earlier osmotic AVP release concomitant with a constant
CH2O during oestradiol exposure indicates a shift in the
osmotic operating point for body fluid to a lower POsm.

Ovarian hormone effects on hyponatraemia. One of the
more important sex differences in humans is the greater
risk for hyponatraemia during endurance exercise in
young, healthy women compared with men of similar
age. This risk has been attributed to women’s lower
body weight and size, excess water ingestion and longer
racing times relative to men (Speedy et al. 2001; Almond
et al. 2005). While these factors contribute to the
greater incidence of hyponatraemia in women, oestradiol

Figure 5. Mean plasma arginine vasopressin concentration
(P[AVP]) responses to increases in plasma osmolality (POsm)
during hypertonic saline infusion (over 105 min) during lupron
administration (GnRH antagonist) alone and with 17
β-oestradiol administration
Data are mean ± SEM.∗ P < 0.05, GnRHa alone versus hormone
treatment. From Stachenfeld & Keefe (2002).

exposure also plays a role in increasing this risk (Fraser &
Arieff, 1997; Ayus et al. 2000; Stachenfeld & Taylor, 2004;
Stachenfeld et al. 2005). Some field studies have suggested
that lower AVP response to increases in osmolality in
women increases their risk for exercise-associated hypo-
natraemia (Siegel et al. 2007). However, our laboratory
data demonstrated that osmotic regulation of AVP is
not different between women with and without hypo-
natraemia (Stachenfeld & Taylor, 2009).

Women of reproductive age are also more likely to
experience post-operative hyponatraemia (Ayus et al.
1992; Ayus & Arieff, 1993, 1996; Fraser & Arieff, 1997),
especially after reproductive surgeries when oestradiol
levels are increased (Amede et al. 2002). In both men and
women undergoing even minor surgery, a combination
of anaesthesia, post-surgical stress and nausea can lead
to dramatic increases in AVP in both sexes, but greater
AVP exposure is associated with brain swelling and
damage primarily in women (Arieff, 1986; Ayus et al.
1992; Ayus & Arieff, 1996; Fraser & Arieff, 1997).
Studies in rats have demonstrated that in response to
increasing hypotonic water retention, AVP increases brain
capillary and cerebroventricular ependymal cell water
permeability through specific water channels (aquaporin
AQP4), which are regulated via AVP-V1 receptors (Fraser
et al. 1989), increasing sodium and water movement
inside astrocytes. In male animals, the Na+-K+ ATPase
pump acts to extrude sodium out of the astrocytes to
normalize volume (Fraser & Sarnacki, 1989). However,
this Na+-K+ ATPase pump action is inhibited in female
rats, especially during oestradiol administration, which
blocks astroglia regulatory volume decrease, resulting in
greater water remaining within the cells and increasing

Figure 6. Mean urine osmolality as a function of mean plasma
arginine vasopressins concentration (P[AVP]) in response to
synthetic AVP infusions duirng administration of a
gonadotropin releasing agonist (luprolide, GnRH antagonist)
alone and with 17 β-oestradiol
Data are mean ± SEM. (Adapted from Stachenfeld et al. (2003).
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the risk of brain damage (Fraser & Sarnacki, 1989).
Thus, oestradiol may play a significant role in the greater
risk of cerebral oedema and encephalopathy in women,
indicating a more complex etiology than simply lower
body size, and in the case of exercise-associated hypo-
natraemia, longer running times and cultural norms of
drinking behaviour (Almond et al. 2005).

Oestrogen and progesterone effects on the regulation of
body water and electrolytes in menopause. Independent
of menopause, ageing has important effects on fluid
balance. Although older people are generally euhydrated,
ageing is associated with higher plasma osmolality and
there is an age-related blunting of thirst sensation during
exercise and water deprivation (Leaf, 1984; Mack et al.
1994). Most importantly, although older adults adequately
restore body fluid homeostasis following dehydration or
water loading, this process is slower relative to younger
individuals (Phillips et al. 1984; Mack et al. 1994;
Stachenfeld et al. 1996), most probably due to slower
kidney function (Lindeman, 1990). Using dehydration
followed by head-out water immersion (a technique that
selectively restores extracellular volume while keeping
osmolality high) we demonstrated that thirst sensitivity
to extracellular volume change is reduced in older adults,
but osmoreceptor signalling remains intact (Mack et al.
1994; Stachenfeld et al. 1997). In menopausal women
oestradiol administration is associated with increases in
basal P[AVP], plasma volume expansion and a down-
ward shift in the osmotic threshold for AVP release
(Stachenfeld et al. 1998). Unlike in younger women, the
earlier osmotic AVP threshold is associated with greater
water and sodium retention (Stachenfeld et al. 1998).
Sodium also plays an important role in hypertension and
progression of chronic kidney disease in postmenopausal
women (Pechere-Bertschi & Burnier, 2004), and salt
sensitivity correlates inversely with levels of circulating
oestrogens and progesterone (Suzuki & Kondo, 2012). A
recent study demonstrated greater desmopressin-induced
water retention in older women, which could increase their
risk of hyponatraemia (Juul et al. 2011).

Water balance during pregnancy

As with women who are not pregnant, ovarian hormones
may also impact plasma volume expansion and water
retention during pregnancy. Within the first few weeks
of pregnancy, maternal oestrogens and progesterone
exposure increase accompanied by increases in plasma
and blood volume, stroke volume, heart rate and cardiac
output. The last trimester of pregnancy is characterized
by a rapid rise in oestrogens, which coincides with greater
plasma volume and interstitial fluid expansion (Hytten,
1970). The increases in blood volume are important to
support both maternal health and fetal development.

This blood volume expansion is supported by a 50%
increase in renal blood flow and glomerular filtration
rate and greater sodium and fluid retention, mediated
by the renin–angiotensin–aldosterone system and AVP
(Chapman et al. 1998; Thornburg et al. 2000). Pregnancy
can increase the risk for hyponatraemia (concomitant with
the blood volume expansion). This hyponatraemic hyper-
volaemia is associated with a lower osmotic threshold for
AVP release (Davison et al. 1984). This threshold shift is
without a change in sensitivity (P[AVP]–POsm slope), similar
to non-pregnant women during high oestrogen exposure
(Stachenfeld & Keefe, 2002). Moreover, the greater AVP
secretion is associated with an enhanced osmotic thirst
response, perhaps leading to greater water intake as has
been seen in the rat model (Brunton et al. 2008; Joyner
et al. 2008).

The mechanism for these pregnancy-related changes
has been investigated primarily in rats. Vasopressin and
oxytocin neurons in the paraventricular (PVN) and supra-
optic nuclei (SON), both located in the hypothalamus,
are osmosensitive and both contribute to sodium and
water regulation during pregnancy. Arginine vasopressin
increases renal free water retention, while oxytocin
stimulates natriuresis through an atrial natriuretic peptide
(ANP) mechanism. During pregnancy, AVP osmo- and
volume regulation adjusts to the blood volume expansion,
shifting the osmotic threshold for AVP release and
thirst to the left. As described by Brunton et al.
(2008), these changes in osmoregulation of AVP are
independent of nitric oxide and opiods, and a similar
shift in osmoregulation of oxytocin does not occur. The
exact mechanism responsible for this shift has not been
determined, but both relaxin and chorionic gonadotropin
(hCG) have been implicated concomitant with changes
in oestrogen and progesterone exposure (Lindheimer &
Davison, 1995; Brunton et al. 2008). For an excellent
review on the subject see Brunton et al. (2008).

In normal pregnancy, oestrogen-related increases in
nitric oxide availability and related vasodilatation reduce
peripheral vascular resistance and prevent increases in
blood pressure that accompany the renin–angiotensin
system stimulation (Chapman et al. 1998) and blood
volume expansion. Indeed, blood pressure can decrease
during pregnancy in healthy women. Also during
pregnancy, aortic size and compliance increase, as does
venous compliance, indicating blood vessel remodelling
(Thornburg et al. 2000). These haemodynamic changes
occur early in pregnancy before the blood supply between
the uterus and placenta is well developed.

Conclusions and perspectives

The series of studies described in this review have been
central to describing the impact of ovarian hormones on
the integrated systems that regulate blood pressure and
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body water. We have emphasized the impact of oestrogens
and progesterone and have put forth the hypothesis that
sex differences in these systems are primarily a function of
the level of exposure to the ovarian hormones oestradiol
and progesterone. Thus, physiological differences between
men and women are important not only because of
their obvious clinical and experimental consequences, but
because of what they tell us about the physiological effects
of the ovarian hormones in systems not directly involved in
reproduction. Ovarian hormones are important regulators
of blood pressure and water regulation systems between
men and women, and they are also important with regard
to these systems within women. Thus, between men
and women, as well as within women, ovarian hormone
exposure, and sensitivity to this exposure, contributes to
blood pressure regulation, as well as disorders of auto-
nomic function such as orthostatic intolerance and hyper-
tension.
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